Local Minimizers of the Ginzburg-landau Functional with Prescribed Degrees

نویسنده

  • Mickaël Dos Santos
چکیده

We consider, in a smooth bounded multiply connected domain D ⊂ R, the Ginzburg-Landau energy Eε(u) = 1 2 ∫ D { |∇u|2 + 1 2ε2 (1− |u|2)2 } subject to prescribed degree conditions on each component of ∂D. In general, minimal energy maps do not exist [4]. When D has a single hole, Berlyand and Rybalko [5] proved that for small ε local minimizers do exist. We extend the result in [5]: Eε(u) has, in domains D with 2, 3, ... holes and for small ε, local minimizers. Our approach is very similar to the one in [5]; the main difference stems in the construction of test functions with energy control.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and non existence results for minimizers of the Ginzburg-Landau energy with prescribed degrees

Let D = Ω\ω ⊂ R be a smooth annular type domain. We consider the simplified Ginzburg-Landau energy Eε(u) = 12 ∫

متن کامل

Size of planar domains and existence of minimizers of the Ginzburg-Landau energy with semi-stiff boundary conditions

The Ginzburg-Landau energy with semi-stiff boundary conditions is an intermediate model between the full Ginzburg-Landau equations, which make appear both a condensate wave function and a magnetic potential, and the simplified Ginzburg-Landau model, coupling the condensate wave function to a Dirichlet boundary condition. In the semi-stiff model, there is no magnetic potential. The boundary data...

متن کامل

Capacity of a multiply-connected domain and nonexistence of Ginzburg-Landau minimizers with prescribed degrees on the boundary

Suppose that ω ⊂ Ω ⊂ R. In the annular domain A = Ω \ ω̄ we consider the class J of complex valued maps having degree 1 on ∂Ω and ∂ω. It was conjectured in [5] that the existence of minimizers of the Ginzburg-Landau energy Eκ in J is completely determined by the value of the H-capacity cap(A) of the domain and the value of the Ginzburg-Landau parameter κ. The existence of minimizers of Eκ for al...

متن کامل

Ginzburg-Landau minimizers with prescribed degrees. Capacity of the domain and emergence of vortices

Let Ω be a 2D simply connected domain, ω be a simply connected subdomain of Ω and set A = Ω\ω. In the annular type domain A, we consider the class J of complex valued maps having degrees 1 on ∂Ω and on ∂ω. We investigate whether the minimum of the Ginzburg-Landau energy Eλ is attained in J , as well as the asymptotic behavior of minimizers as the coherency length λ−1/2 tends to 0. We show that ...

متن کامل

Ginzburg-Landau minimizers with prescribed degrees. Emergence of vortices and existence/nonexistence of the minimizers

Let Ω be a 2D domain with a hole ω. In the domain A = Ω \ ω consider a class J of complex valued maps having degrees 1 and 1 on ∂Ω, ∂ω respectively. In a joint work with P. Mironescu we show that if cap(A) ≥ π (subcritical domain), minimizers of the Ginzburg-Landau energy E κ exist for each κ. They are vortexless and converge in H(A) to a minimizing S-valued harmonic map as the coherency length...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011